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Adverse pregnancy outcomes such as implantation failure, fetal
growth restriction, preeclampsia, and stillbirth occur worldwide at
concerning rates.1–4 Although their root causes are yet to be fully
elucidated, the majority of these outcomes can be traced back to
defects in placenta formation,5 a process that is still poorly under-
stood. A new report in Environmental Health Perspectives lever-
aged a novel in vitro model to examine how organophosphate
flame retardants (OPFRs) placentation and associated effects on
birth outcomes.6

In humans, the process of placentation begins very early in
pregnancy, when embryonic cells called trophoblasts enter the
uterine lining in a process called invasion. There, they fuse fetal
and maternal tissue.7 The placenta continues to develop through-
out the first trimester, acting as a vital interface that regulates nu-
trient exchange and waste removal, protects against external
insults, and secretes hormones that maintain pregnancy and pre-
pare the mother’s body for birth.8

Growing evidence suggests that environmental exposures
may contribute to pregnancy complications that are mediated by
disruption of placentation.9–11 The effects of these complications
can endure into adulthood,12 making the identification of such
environmental culprits all the more pressing. Epidemiological
studies have linked OPFRs—widely used in furniture, textiles,

electronics, building materials, and food packaging13,14—to these
adverse pregnancy outcomes.15

Despite the varied and important roles of the placenta in fetal
development, current knowledge about human placentation and
how environmental chemicals may influence the process has been
hampered by limited access to developing tissues and the absence
of representative experimental models.16 “To address these conun-
drums, our study applied human trophoblast organoids, which can
display near-physiological cellular composition and behavior rela-
tive to immature human placenta,” says senior author Jianying Hu,
a professor in the Department of Environmental Science at Peking
University.

Organoids are self-organizing, three-dimensional structures
typically derived from stem cells or tissues in culture that can re-
capitulate the complex structural, biological, and functional fea-
tures of tissues and organs, bridging the gap between in vitro and
in vivo models.17,18 In the present study, Hu and colleagues cul-
tured trophoblast organoids from placental villi donated by five
women.6 They used the organoids to screen the placental toxicity
of 46 OPFRs. Three of those chemicals were determined to affect
cell proliferation without impairing cell survival. One of the
three, 2-ethylhexyl diphenyl phosphate (EHDPP), has been
widely detected in both environmental and human samples11,19

Colored scanning electron micrograph of a human embryo at 11 days implanted in the wall of the uterus. New rodent and in vitro experiments suggest that
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and is associated with pregnancy complications.20,21 The authors
wrote that “EHDPP is the only organophosphate ester approved
by the U.S. Food and Drug Administration Center for Food
Safety and Applied Nutrition for use as a fire retardant in food
packaging materials.”6

In subsequent in-depth mechanistic studies, they showed that
EHDPP reduced metabolic function of trophoblasts. These results
were closely recapitulated in parallel in vivo mouse experiments,
using doses comparable to human exposures. Both immature and
mature placentas from mice exposed before and during gestation
exhibited decreased metabolic function and cell proliferation,
compared with controls. Finally, exposure to EHDPP led to
increased implantation failure, fetal growth restriction, and still-
birth. In offspring that survived to adulthood, exposure was also
linked to impaired glucose tolerance, a sign of prediabetes.

“The authors were able to use a combination of tools to screen
the toxicity of numerous compounds and also validated these
results in an in vivo model,” says Liping Feng, an associate pro-
fessor at Duke University School of Medicine, underscoring the
reliability of the study. “In addition, they measured concentra-
tions of EHDPP in the placenta, which is very important because
it can differ from that of the maternal circulation.”

Feng, who was not involved in the study, adds that it is impor-
tant to look beyond placental mechanisms to evaluate whether
OPFRs can directly affect the embryo or fetus. Toxic chemicals
can cross the placenta and even accumulate in the embryo.22–24

One recent study25 detected OPFRs in both the maternal and fetal
sides of the placenta, highlighting the need to fully characterize
their mechanism of action to better inform exposure reduction
policies.

Almudena Veiga-Lopez, an associate professor at the
University of Illinois at Chicago College of Medicine, notes that
this study primarily focuses on proliferation, which is a feature of
“stemness” shared with cell types in other organs. Veiga-Lopez,
who also was not involved in the study, says future studies should
focus on evaluating functions specific to placental cells, such as
cell invasion, cell fusion, and steroidogenesis.

Florencia Pascual, PhD, is a freelance science writer based in Durham, North
Carolina.
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